Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves points over finite fields.
ECC requires smaller keys compared to non-ECC cryptography to provide equivalent security.
For example, to achieve the same security ensured by ECC having private key of 256 bit length, it is required to use 3000 bit private key length for RSA cryptosystem and others.

Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks.
Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme.

Elliptic Curve Digital Signature Algorithm - Bitcoin Wiki (ECDSA)

https://en.bitcoin.it/wiki/Elliptic Curve Digital Signature AlgorithmFeb 10, 2015
Elliptic Curve Digital Signature Algorithm or ECDSA is a cryptographic algorithm used by Bitcoin to ensure that funds can only be spent by their owner. https://en.wikipedia.org/wiki/Elliptic-curve cryptography

Finite Field denoted by $\boldsymbol{F}_{\boldsymbol{p}}$ (or rarely $\boldsymbol{Z}_{\boldsymbol{p}}$), when: \boldsymbol{p} is prime.
$F_{p}=\{0,1,2,3, \ldots, p-1\} ;+_{\bmod p},-\bmod p, \cdot \bmod p,: \bmod p . \quad a, b, c \in F_{p}: a *(b+c)=a * b+a * c \bmod p$ Cyclic Group: $Z_{p}{ }^{*}=\{1,2,3, \ldots, p-1\} ; \cdot \bmod p,: \bmod p$.
For example, if $p=11$, then one of the generators is $g=2 . \quad \mathscr{L}_{p}^{*}=\{1,2,3,4,5,6,7,8,9,10\} \begin{aligned} & p=\mathbf{1 1} \\ & \mathbf{x} a=\in\end{aligned}$ If g is a generator in \mathscr{L}_{p}^{*} then $\mathscr{L}_{p}^{*}=\left\{g^{i} \bmod p \mid i=0,1,2, \ldots, p-2\right\}$ If $p=11$, then $g=2$ is a generator $\mathcal{Z}_{11}^{*}=\left\{2_{\bmod p}^{i} \mid i=0,1,2, \ldots, 9\right\}$

The main function used in cryptography was Discrete Exponent Function - DEF:
$\operatorname{DEF}(x)=g^{x} \bmod p=a$.

\boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$2^{x} \bmod p$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{1}$

Discrete Exponent Function $-\operatorname{DEF}(x)=g^{x} \bmod p$
\boldsymbol{x} is in $\boldsymbol{Z}_{p-1}=\boldsymbol{Z}_{\mathbf{1 0}}=\{0,1,2, \ldots, 9\}$;
$\operatorname{DEF}(\boldsymbol{x})$ is in $\boldsymbol{Z}_{p}{ }^{*}=\boldsymbol{Z}_{11} *=\{1,2,3, \ldots, 10\}$;
DEF: $\boldsymbol{Z}_{p-1} \rightarrow \boldsymbol{Z}_{p}{ }^{*}$.
Fermat theorem: if p is prime, then for any $z: z^{\mathrm{p}-1}=\mathbf{1} \bmod \mathrm{p}$.
If g is a generator in $\boldsymbol{Z}_{\boldsymbol{p}}{ }^{*}$ then DEF is 1-to-1 mapping.

Multiplicative Group $\boldsymbol{Z}_{p}{ }^{*}$

$Z_{p}{ }^{*}=\{1,2,3$,
,.., p
Operation: multiplication $\bmod p$
Neutral element is 1.
Generator $g: \boldsymbol{Z}_{p}{ }^{*}=\left\{g^{i} ; i=0,1,2, \ldots, p-1\right\}$
Two criterions to find g when p is strong prime. $g^{n}=1 \bmod p$ and $g^{n} \neq 1 \bmod p$ if $\boldsymbol{n}<p$.
Modular exponent: $t=g^{k} \bmod p$
$t=g \bullet \bullet \bullet g \bullet \ldots \cdot g \bmod p ; k$-times.

$$
\begin{aligned}
& p=11, p-1=10 \\
& \bmod ^{\bmod } \\
& \boldsymbol{Z}_{11^{*}}=\{1,2, \ldots, 10\} \\
& \left|\mathbf{Z}_{11^{*}}\right|=10, \mathrm{~g}=2 .
\end{aligned}
$$

3	4
4	5
5	6
6	7
7	8
8	9
9	10

Additive Group $\boldsymbol{Z}_{p-1}{ }^{+}$
$\boldsymbol{Z}_{p-\mathbf{1}^{+}}=\{0,1,2,3, \ldots, p-2\}$
Operation: addition $\bmod (p-\mathbf{1})$
Neutral element is $\mathbf{0}$.
Generator $g: \boldsymbol{Z}_{p-1}{ }^{+}=\{\boldsymbol{i} \cdot g ; \boldsymbol{i}=0,1,2, \ldots, p-2\}$ E.g. $g=1$.
$(p-1) \cdot g=0 \bmod (p-1)$ and
$n \bullet g \neq 0 \bmod (p-1)$ if $\boldsymbol{n}<p-2$.
Modular multiplication: $\boldsymbol{t}=\boldsymbol{k} \bullet g \bmod p-\mathbf{1}$
$\boldsymbol{t}=g+g+g+\ldots+g \bmod p-\mathbf{1} ; \boldsymbol{k}$-times.

$$
\begin{aligned}
& p=\mathbf{1 1}, \mathrm{p}-\mathbf{1}=\mathbf{1 0} \\
& +{ }^{+\bmod (\mathrm{p}-1)} \\
& \mathbf{Z}_{10^{+}}=\{0,1,2, \ldots, 9\} \\
& \left|\mathbf{Z}_{10^{+}}\right|=10 ; \mathrm{g}=1 .
\end{aligned}
$$

Coordinate systems XOY in subsequent examples are defined in the plane of real numbers.

$$
\left.\begin{array}{l}
P\left(x_{P}, y_{p}\right)=(2,4) \\
Q\left(x_{Q}, y_{Q}\right)=(4,1)
\end{array}\right\}_{T=P+Q=(2+4,4+1)}^{T=P\left(x_{P}, y_{P}\right)+Q\left(x_{Q}, y_{Q}\right)=} \begin{aligned}
& T, 5) \\
& =T\left(x_{P}+x_{Q}, y_{P}+y_{Q}\right)=T\left(x_{\pi}, y_{Q}\right) \\
& x_{T}=x_{P}+x_{Q} \\
& y_{T}=y_{P}+y_{Q} \\
& T_{2}=P+P=2 P=
\end{aligned}
$$

$$
\begin{gathered}
x_{T}=2+4=6 \\
y_{T}=2+4=6 \\
|T|= \\
=\sqrt{6^{2}+6^{2}}
\end{gathered}
$$

Elliptic curve ha a property that if line crosses two points, then there is a third crossing point in the curve.
Points in the plane or plane curve we denote by the capital letters, egg. A, G, P, Q, etc.
Numbers-scalars we denote by the lowercase letters, e.g., $\mathbf{a}, \mathbf{g}, \mathbf{x}, \mathbf{y}, \mathbf{z}$, etc.
Addition of points P and Q in $\mathrm{EC}: \mathbf{P}+\mathbf{Q}=\mathbf{T}$

$$
P\left(x_{P}, y_{P}\right)+Q\left(x_{Q}, y_{Q}\right)=T\left(x_{T}, y_{T}\right)
$$

$5-5 \bmod 10=0 \quad T-T={ }_{11} 0^{\prime \prime} \longrightarrow T+(-T)=, 0^{\prime \prime} \equiv \infty$
$7+0 \bmod 10=7$

$$
T+\infty=T
$$

When z is large, $z \sim 2^{256} \rightarrow|z|=256$ bits:
Doubling of points allows effectively compute point $A=z G$

ECDSA animaciia

Signing and Verifying Ethereum Signatures - Yos Riady • Software Craftsman
https://medium.com/coinmonks/elliptic-curve-cryptography-6de8fc748b8b

For current cryptographic purposes, an elliptic curve is a plane curve over a finite field $\boldsymbol{F}_{\boldsymbol{p}}=\{0,1,2,3, \ldots, \boldsymbol{p}-1\}$, (rather than the real numbers) \boldsymbol{p}-is prime.
Which consists of the points satisfying the equation over $\boldsymbol{F}_{\boldsymbol{p}}$

$$
y^{2}=x^{3}+a x+b \bmod p
$$

along with a distinguished point at infinity, denoted by $0(\infty)$.
Finite field is an algebraic structure, where 4 algebraic operations: $+_{\bmod p},-\bmod p,{ }^{\prime} \bmod p,: \bmod p$ are defined except the division by 0 excluded.

Elliptic Curve Group (ECG)

Number of points \mathbf{N} of Elliptic Curve with coordinates $(\boldsymbol{x}, \boldsymbol{y})$ is an order of ECG.
Addition operation \boxplus of points in ECG: let points $\boldsymbol{P}\left(\boldsymbol{x}_{P}, \boldsymbol{y}_{P}\right)$ and $\boldsymbol{Q}\left(\boldsymbol{x}_{Q}, \boldsymbol{y}_{Q}\right)$ are in EC with coordinates $\left(\boldsymbol{x}_{P}, \boldsymbol{y}_{P}\right)$ and $\left(\boldsymbol{x}_{Q}, \boldsymbol{y}_{\boldsymbol{Q}}\right)$ then $\boldsymbol{P} \boxplus \boldsymbol{Q}=\boldsymbol{T}$ with coordinates $\left(\boldsymbol{x}_{\boldsymbol{T}}, \boldsymbol{y}_{\boldsymbol{T}}\right)$ in EC.
Neutral element is group zero 0 at the infinity (∞) of [XOY] plane.
Multiplication of any EC point G by scalar $z: T=z * G ; T=G \boxplus G \boxplus G \boxplus \ldots \boxplus G ; z$-times.
Generator-Base Point \boldsymbol{G} : ECG $=\{\boldsymbol{i} * \boldsymbol{G} ; \boldsymbol{i}=1,2, \ldots, \mathbf{N}\} ; \boldsymbol{N} * \boldsymbol{G}=0$ and $\boldsymbol{q} * G \neq 0$ if $\boldsymbol{q}<\boldsymbol{N}$.

ElGamal Cryptosystem (CS)

$\mathrm{PP}=($ strongprime p, generator g); $p=255996887 ; g=22$;
$\operatorname{PrK}=x$;
>> $\mathrm{x}=\operatorname{randi}(p-1)$.
PuK $=a=g^{x} \bmod p$.

Elliptic Curve Cryptosystem (CS)

$\mathrm{PP}=(\mathrm{EC} \operatorname{secp} 256 \mathrm{k} 1$; BasePoint-Generator G; prime p; param. $\boldsymbol{a}, \boldsymbol{b})$; Parameters $\boldsymbol{a}, \boldsymbol{b}$ defines EC equation $\boldsymbol{y}^{2}=\boldsymbol{x}^{3}+\boldsymbol{a x}+\boldsymbol{b} \bmod p$ over \boldsymbol{F}_{p}.
$\operatorname{PrK}_{\text {ECC }}=\mathbf{z}$;
>> $\mathrm{z}=\operatorname{randi}(p-1)$.
$\mathrm{PuK}_{\mathrm{ECC}}=A=\mathrm{Z} * G$.

Alice A : $\mathrm{x}=1975596 ; a=210649132$; Alice $A: \mathrm{z}=\ldots \ldots ; A=\left(x_{A}, y_{A}\right)$;

$$
P=127 \quad \frac{177}{\frac{12}{\frac{7}{7}}} / \frac{2}{63,5}
$$

昔

